A Distributed Chemosensory Circuit for Oxygen Preference in C. elegans

نویسندگان

  • Andy J Chang
  • Nikolas Chronis
  • David S Karow
  • Michael A Marletta
  • Cornelia I Bargmann
چکیده

The nematode Caenorhabditis elegans has complex, naturally variable behavioral responses to environmental oxygen, food, and other animals. C. elegans detects oxygen through soluble guanylate cyclase homologs (sGCs) and responds to it differently depending on the activity of the neuropeptide receptor NPR-1: npr-1(lf) and naturally isolated npr-1(215F) animals avoid high oxygen and aggregate in the presence of food; npr-1(215V) animals do not. We show here that hyperoxia avoidance integrates food with npr-1 activity through neuromodulation of a distributed oxygen-sensing network. Hyperoxia avoidance is stimulated by sGC-expressing oxygen-sensing neurons, nociceptive neurons, and ADF sensory neurons. In npr-1(215V) animals, the switch from weak aerotaxis on food to strong aerotaxis in its absence requires close regulation of the neurotransmitter serotonin in the ADF neurons; high levels of ADF serotonin promote hyperoxia avoidance. In npr-1(lf) animals, food regulation is masked by increased activity of the oxygen-sensing neurons. Hyperoxia avoidance is also regulated by the neuronal TGF-beta homolog DAF-7, a secreted mediator of crowding and stress responses. DAF-7 inhibits serotonin synthesis in ADF, suggesting that ADF serotonin is a convergence point for regulation of hyperoxia avoidance. Coalitions of neurons that promote and repress hyperoxia avoidance generate a subtle and flexible response to environmental oxygen.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hypoxia and the HIF-1 transcriptional pathway reorganize a neuronal circuit for oxygen-dependent behavior in Caenorhabditis elegans.

Rapid behavioral responses to oxygen are generated by specialized sensory neurons that sense hypoxia and hyperoxia. On a slower time scale, many cells respond to oxygen through the activity of the hypoxia-inducible transcription factor HIF-1. Here, we show that in the nematode Caenorhabditis elegans, prolonged growth in hypoxia alters the neuronal circuit for oxygen preference by activating the...

متن کامل

Chemosensory neurons with overlapping functions direct chemotaxis to multiple chemicals in C. elegans.

The functions of the 11 classes of exposed chemosensory neurons of C. elegans were tested by killing cells with a laser microbeam. One pair of neurons, the ASE neurons, is uniquely important for chemotaxis: killing the ASE neurons greatly reduced chemotaxis to cAMP, biotin, Cl-, and Na+. Additional chemosensory function is distributed among several other cell types. Thus, 3 pairs of chemosensor...

متن کامل

Chemosensory and hyperoxia circuits in C. elegans males influence sperm navigational capacity

The sperm's crucial function is to locate and fuse with a mature oocyte. Under laboratory conditions, Caenorhabditis elegans sperm are very efficient at navigating the hermaphrodite reproductive tract and locating oocytes. Here, we identify chemosensory and oxygen-sensing circuits that affect the sperm's navigational capacity. Multiple Serpentine Receptor B (SRB) chemosensory receptors regulate...

متن کامل

Chemosensation in C. elegans.

C. elegans has a highly developed chemosensory system that enables it to detect a wide variety of volatile (olfactory) and water-soluble (gustatory) cues associated with food, danger, or other animals. Much of its nervous system and more than 5% of its genes are devoted to the recognition of environmental chemicals. Chemosensory cues can elicit chemotaxis, rapid avoidance, changes in overall mo...

متن کامل

Circuit Optimization Predicts Dynamic Network for Chemosensory Orientation in the Nematode C. elegans

The connectivity of the nervous system of the nematode Caenorhabditis elegans has been described completely, but the analysis of the neuronal basis of behavior in this system is just beginning. Here, we used an optimization algorithm to search for patterns of connectivity sufficient to compute the sensorimotor transformation underlying C. elegans chemotaxis, a simple form of spatial orientation...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • PLoS Biology

دوره 4  شماره 

صفحات  -

تاریخ انتشار 2006